Probabilistic Structural Controllability in Causal Bayesian Networks
نویسندگان
چکیده
Humans routinely confront the following key question which could be viewed as a probabilistic variant of the controllability problem: While faced with an uncertain environment governed by causal structures, how should they practice their autonomy by intervening on driver variables, in order to increase (or decrease) the probability of attaining their desired (or undesired) state for some target variable? In this paper, for the first time, the problem of probabilistic controllability in Causal Bayesian Networks (CBNs) is studied. More specifically, the aim of this paper is two-fold: (i) to introduce and formalize the problem of probabilistic structural controllability in CBNs, and (ii) to identify a sufficient set of driver variables for the purpose of probabilistic structural controllability of a generic CBN. We also elaborate on the nature of minimality the identified set of driver variables satisfies. In this context, the term “structural” signifies the condition wherein solely the structure of the CBN is known.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملRecursive Causality in Bayesian Networks and Self-Fibring Networks
So causal models need to be able to treat causal relationships as causes and effects. This observation motivates an extension the Bayesian network causal calculus (Section 2) to allow nodes that themselves take Bayesian networks as values. Such networks will be called recursive Bayesian networks (Section 3). Because recursive Bayesian networks make causal and probabilistic claims at different l...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملLoad-Frequency Control: a GA based Bayesian Networks Multi-agent System
Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1512.01885 شماره
صفحات -
تاریخ انتشار 2015